Evaluating Consolidated Alts and Portfolios

WSAC Meeting Santa Cruz

April 30, 2015

STRATUS CONSULTING

Objectives

 Foster understanding and guide <u>discussion</u> of the many items included in the Packet

- Help Tee Up Scenario/Portfolio-Building Exercise
 - Providing illustrations

Taking a Closer Look at Several CAs <u>Running CAs groups through Confluence</u>

- How well does a CA function within the overall system? (interaction of CA with other water system components)
- Several very important assumptions and caveats
 - Infrastructure-related constraints assumed away
- How much does a CA help address needs? (How much does it help fill the gap – what is its effective yield?)

Key Terms: Supply versus Yield

- **Supply**: How much water is produced by a CA, at its source (source production)
 - <u>Independent</u> of the rest of the water system
 - E.g., recycled water @3.6 mgd, 365 days => 1.3 BG/year
- **Yield**: How much water does the CA provide toward meeting peak season demand...
 - <u>Integrated</u> with the rest of the water system
 - Contribution to filling supply and demand gap (peak season)
 - Varies by hydrologic year (average vs. worst year yields)

CA Groups Examined

- Winter Flows (CA 9, 16, 18, 19)
 - How much water might actually be available?
 - How much storage and other infrastructure may be required?
- Added treatment (removing turbidity constraint)
 - Ranney collectors or new treatment plant (CA-19)
- Climate-independent options (CA 7, 13, 15, and 10)
 - Reuse variations, or desal

Key Findings: Winter Flows

- **IF** all applicable infrastructure and storage constraints eliminated ...
- Then winter flows available under existing water rights eliminate future shortages
 - Even under climate change and DFG-5 scenario
 - Addressing "Turbidity Constraint" has little impact
- Key remaining issues:
 - *Virtual reservoir*: options, feasibility, returns, cost, etc.
 - Examining infrastructure needs scale, feasibility, cost,...
 - Factoring in CIP
 - Considering risks, diversification

Key Findings: Climate-independent Options (Recycled Water, Desal)

- **IF** all applicable infrastructure constraints eliminated ...
- Recycled water or desal can eliminate future shortages
 - Absent added storage, few shortages, and none > 15%
 - Even under climate change and DFG-5 scenario
- Adding storage addresses remaining shortages
 - Requires much less storage than winter flow regimes (~1.3 BG vs ~3.0 BG)

Gaps Under Current (Base) System

Base system peak-season shortages				
Worst-year yield gap		Average yield gap		
(mg)		(mg)		
Historical	Climate	Historical	Climate	
	change		change	
1,360	1,150	60	420	

CA Yield Estimates

Comparison of yields

(if no infrastructure or storage constraints)

	0 /		
	Worst-year yield	Average yield	
	(mg)	(mg)	
Consolidated	Climate	Climate	
Alternatives	change	change	
Winter flow capture	1,150	420	
North Coast exchange	850	410	
Indirect potable reuse	1,150	420	
Felton Ranney collectors	115	290	
C Rec Conservation	90	100	
North Coast exchange + C Rec	1,120	420	

Other Items Covered in Packet

- Confluence assessment of "Program C recommended" (8c)
- Key findings and observations on CAs (8d)
- Technical Summary Templates (8e)
 - Updated version available as handouts
 - Summary Table (1-pagers) available as handouts
- Graywater alternatives (8f)

- Discussion
- Questions?

Thank you!

