# Evaluating 4 Sample Portfolios: Lead-Up to SWOT Exercise



WSAC Meeting Santa Cruz

June 11, 2015

#### STRATUS CONSULTING

## Reminder: Objectives of the 4 Portfolios

- Foster discussion of issues related to
  - Tapping winter flows, and
  - Restoring regional aquifers (e.g., ASR)
- Set up SWOT Exercise
  - Portfolios that provide interesting differences
  - NOT intended to be "THE" portfolios
- "This has been a test.... Had these been real portfolios...."
  - Preliminary cost estimates, as fodder for exercise

#### Caveats to Keep in Mind

- Individual components, versus their contribution within a portfolio, within the overall system
- Estimates are very preliminary (developed in great haste)
- Yields and supplies in the packet tables reflect results *IF* ASR functions as required

## Key Terms: Supply versus Yield

- **Supply**: How much water is produced by an option (source production)
  - <u>Independent</u> of the rest of the water system
  - E.g., recycled water @3.6 mgd, 365 days => 1.3 BG/year
- **Yield**: How much water does the option provide toward meeting peak season demand...
  - <u>Integrated</u> with the rest of the water system
  - Contribute to filling peak season supply-demand gap
  - Worst year peak season shortage is 1,110 mg (avg. yr 340)

#### Key Findings from April/May: Winter Flows

- IF all applicable infrastructure and storage constraints eliminated ...
- Then winter flows available under existing water rights eliminate future shortages
  - Even under climate change and DFG-5 scenario
- Key remaining issues:
  - 3 BG storage is needed, and time to fill it!
  - Infrastructure and institutional needs, feasibility, cost, risks, uncertainties, etc...
  - Factoring in CIP, other risks and vulnerabilities

## April/May Finding: Drought-Proof Options (Recycled Water, Desal)

- <u>IF</u> all applicable infrastructure constraints eliminated...
- Recycled water or desal can eliminate future shortages
  - Absent added storage, few shortages, and none > 15%
  - Even under climate change and DFG-5 scenario
- Adding storage addresses small remaining shortages
  - Requires much less storage than winter flow regimes

## Filling the Gap: Some Key Observations

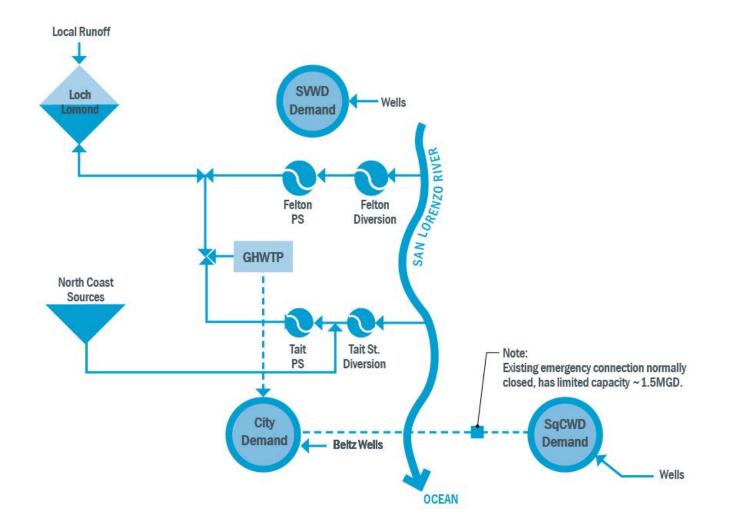
- 1. Winter flows can fill the gap, ... **BUT** 
  - a) Requires large volume of storage (3 BG)
  - b) Need upfront years to provide the water to store
  - c) Many questions about ASR viability, timing, and cost
- 2. Drought-proof options can fill the gap
  - a) Modest storage helps
  - b) Cost and energy requirements pose challenges
- 3. A combination of above is very resilient and robust
  - a) Handles interim period, and provides back-up
  - b) Diversifies against risks
- 4. There are no inexpensive options

Table 2-3: Probabilities and projected peak season supply shortfalls of in any year: Climate change, DFG-5, and revised interim mid-range demand forecast

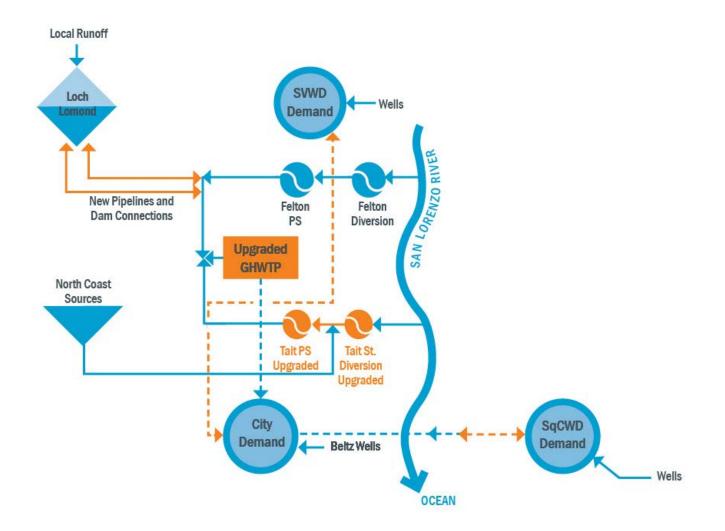
| Shortage (mg) | Shortage % | Probability |  |
|---------------|------------|-------------|--|
| > 950 mg      | >50%       | 6%          |  |
| 480-950 mg    | 25% to 50% | 31%         |  |
| 290-450 mg    | 15% to 25% | 12%         |  |
| 100-290mg     | 5% to 15%  | 6%          |  |
| 0-100 mg      | <5%        | 45%         |  |

Table 1-1: Portfolio 1/Plan A-1: In-Lieu Recharge Using Winter Flows (w/ Current Loch Operating Rule – Reserve of 1000 MG), Coupled with Program C Rec

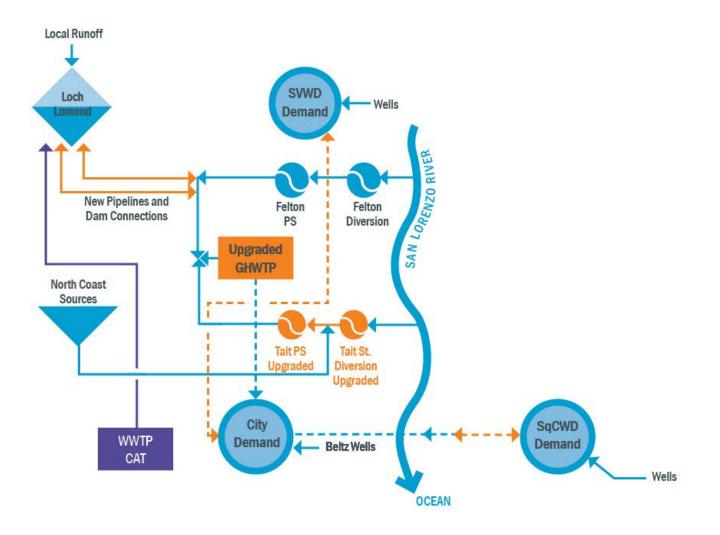
|   | Estimates                                   | Component 1:<br>Program C Rec | Component 2:<br>In-lieu Recharge | Totals<br>[weighted average] |
|---|---------------------------------------------|-------------------------------|----------------------------------|------------------------------|
| A | Capital (upfront) costs (\$M)               | n/a                           | \$232 M                          | \$232 M +                    |
| B | Annual O&M costs (\$M/yr)                   | n/a                           | \$2.1 M                          | \$2.1 M +                    |
| C | Total Annualized Cost (\$M/Yr)              | \$1.1 M                       | \$17.5 M                         | \$18.6 M                     |
| D | PV Costs (30 years) (\$M)                   | \$23 M                        | \$401 M                          | \$424 M                      |
| E | Production Supply (mgy)                     | 173 mgy                       | 500 mgy                          | 673 mgy                      |
| F | Average Year peak season Yield (mg)         | 100 mg                        | 10 mg                            | 110 mg                       |
| G | Worst year peak season Yield (mg)           | 130 mg                        | 10 mg                            | 140 mg                       |
| Η | Energy Use (MWh/MG)                         | (1.6)                         | 8.6                              | [\$7.4]                      |
| Ι | Annualized Unit Cost (C/E; \$/mg)           | \$6,532                       | \$35,000                         | [\$27,682]                   |
| J | PV Unit Cost (D/PV[E*years]; \$/mg)         | \$8,301                       | \$38,274                         | [\$30,569]                   |
| K | Average SV & SqCWD demand served (mg and %) | n/a                           | 490 mg<br>(32%)                  | 490 mg<br>(32%)              |


<sup>1 25-</sup>year average annual cost to utility and customers, omitting administrative costs borne by the Water Department

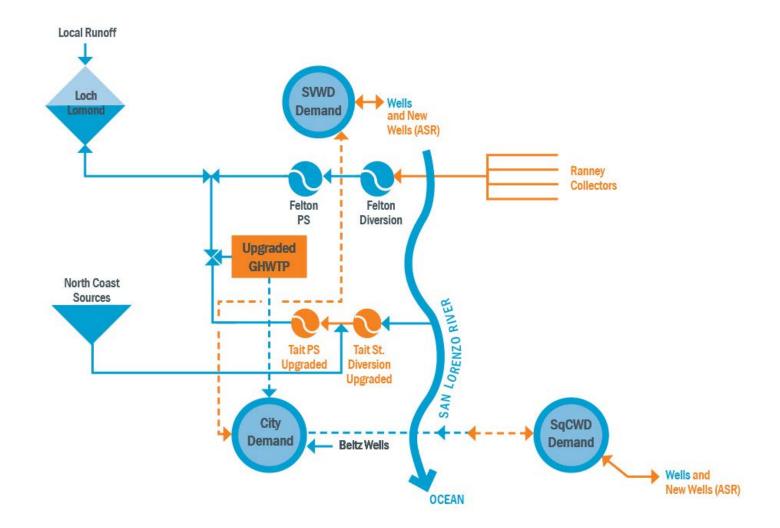
<sup>&</sup>lt;sup>[2]</sup> Average annual water savings over 25 years; maximum savings of 220 mg attained in 2030


#### The 4 Portfolios for SWOT Exercise

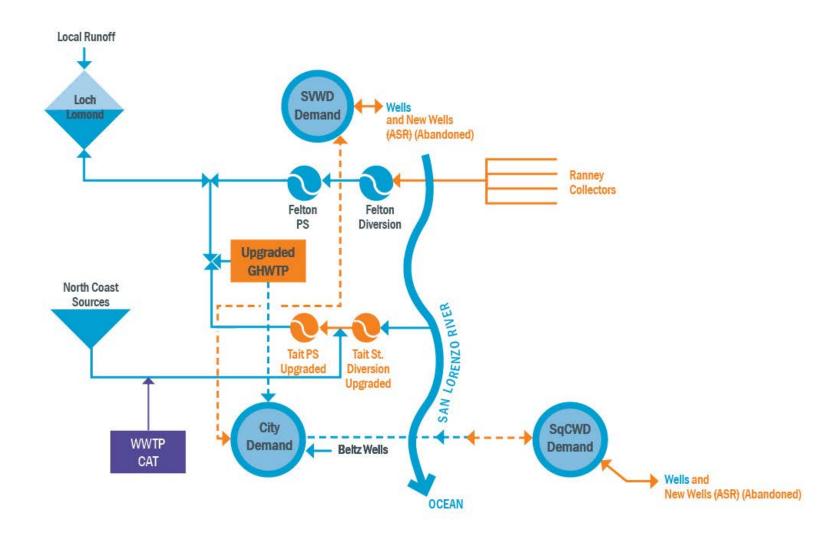
- 1. Winter Flows for In-Lieu
  - a) Purified recycled to Loch Lomond as Plan B (IPR)
  - b) Modified Loch Lomond operating rule curve (reserve)
- 2. ASR using winter flows
  - a) Shortages/curtailments in the interim
  - b) Purified recycled water (DPR) as Plan B
- 3. ASR w/winter flows, plus seawater barrier wells (IPR)
  - a) Increased groundwater use in interim, when needed
  - b) Purified recycled water as Plan B (convert IPR to DPR)
- 4. ASR w/winter flows, plus DW Desal as supplement
  - a) DW Desal retained, as Plan B


## Existing

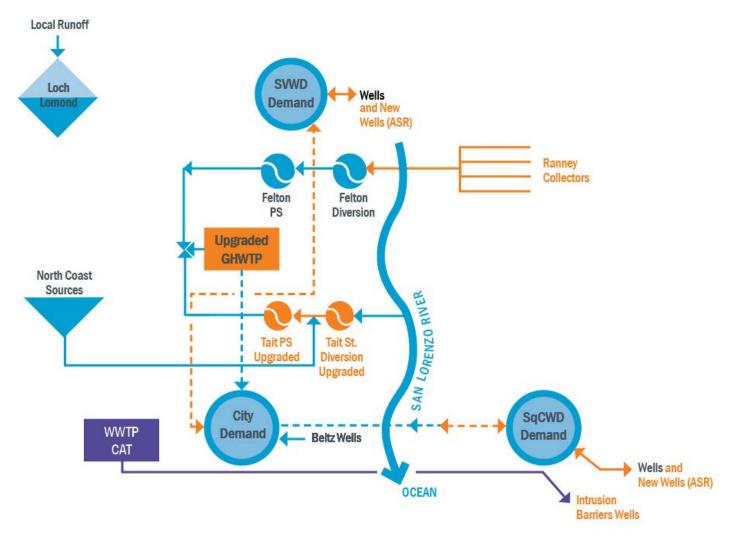



#### Portfolio 1 Plan A-1/Plan A-2 (In lieu)

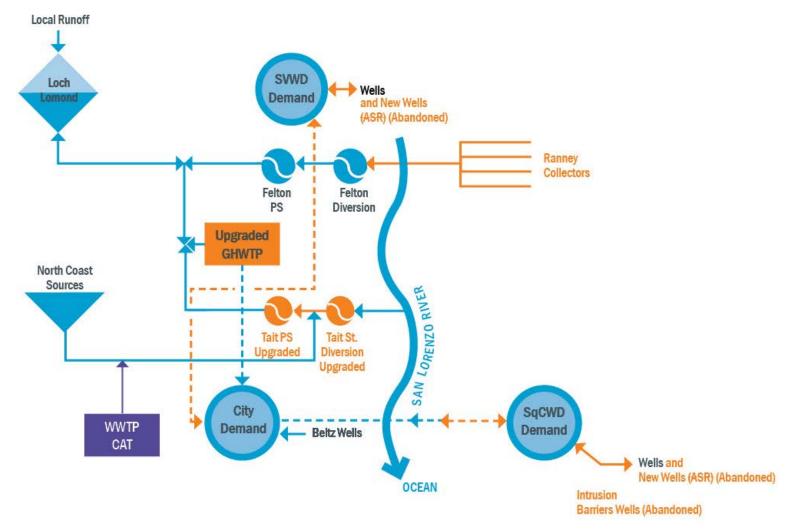



#### Portfolio 1 Plan B-1/Plan B-2 (Add IPR)

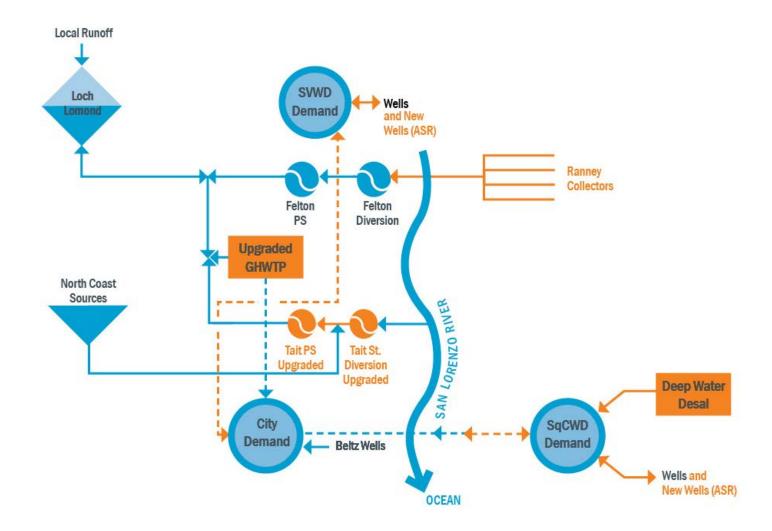



#### Portfolio 2 Plan A (ASR)

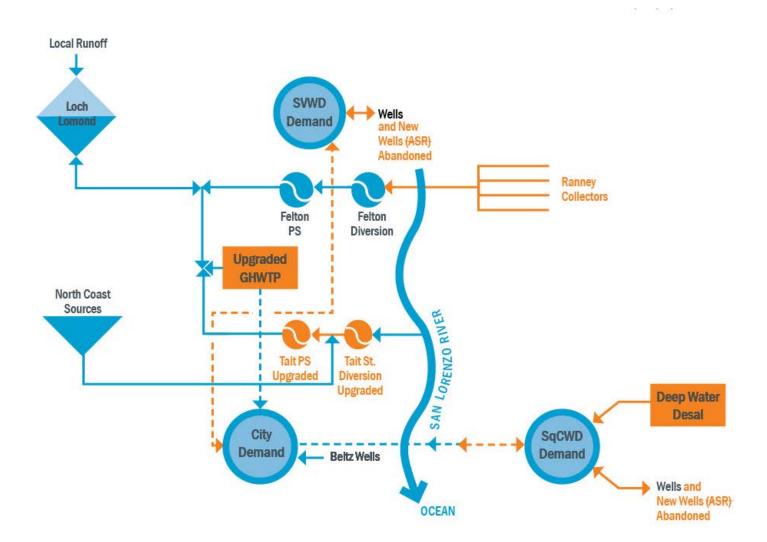



#### Portfolio 2 Plan B (add DPR, abandon ASR)




#### Portfolio 3 Plan A (ASR plus Seawater barrier)




#### Portfolio 3 Plan B (Switch to DPR, abandon ASR)



#### Portfolio 4 Plan A (ASR plus DW Desal)



#### Portfolio 4 Plan B (Abandon ASR, Keep DW Desal)

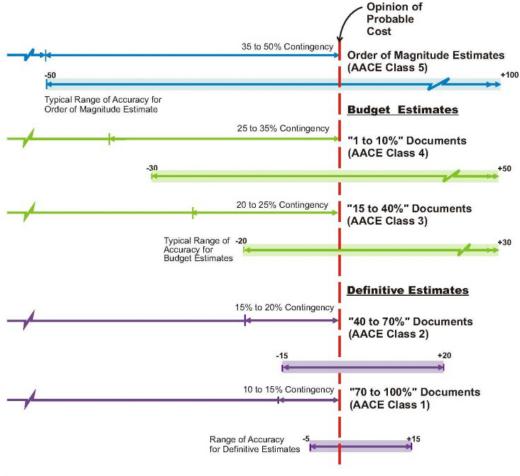


#### **Summary of Capital Costs**

# Summary of Capital Costs for Portfolios

| Portfolios | Capital Cost by Plan (million \$) |     |       |  |
|------------|-----------------------------------|-----|-------|--|
|            | Α                                 | В   | Total |  |
| 1          | 232                               | 241 | 473   |  |
| 2          | 95                                | 114 | 209   |  |
| 3          | 232                               | 7   | 239   |  |
| 4          | 197                               | 102 | 197   |  |

#### "Soft Costs"


#### Summary of "Soft Costs"

| Components                        | Percent (%) |  |
|-----------------------------------|-------------|--|
| Engineering and<br>Administration | 20          |  |
| Legal                             | 5           |  |
| Geotechnical<br>Investigation     | 1           |  |
| Permitting – CEQA/NEPA            | 5           |  |
| Total                             | 31          |  |

## **Contingency Categories**

- Unforeseen site conditions
- Bidding climate
- Changes in regulations
- Unexpected environmental mitigation requirements
- Stakeholder-requested or necessitated changes

#### **Opinions of Probable Cost Typical Contingencies and Ranges of Accuracy**



#### Note:

1. Contingencies shown are typical

2. Ranges of Accuracy indicated are typical values from AACE document 18R-97 (REV 02/06)

- Discussion
- Questions?

Thank you!

- Plan A provides limited benefit
  - Shortages and curtailments likely for SCWD
  - Perhaps modestly abated by added groundwater
- Changing Loch Lomond reserve (1 bg to 500 mg)
  - Modest increase in in-lieu recharge
  - Places SCWD at risk
- Adding purified recycled water to Loch Lomond helps significantly
  - Addresses all needs in SCWD, and SVWD and SqCWD
  - But adding IPR comes at a fiscal and energy cost

- Plan A, *IF* ASR functions as required, addresses City needs
  - Will take at least a decade to reach this point
  - Does not address needs in SVWD or SqCWD
- Plan B, switching to DPR, meets all SCWD needs
  - Also enables in lieu recharge (by meeting 57% of SVWD and SqCWD demands)
  - Costs a bit more than Plan A (ASR)
  - Higher energy use than ASR

- Plan A, *IF* ASR functions as required, addresses City needs (after a decade or so)
  - Purified recycled water for seawater intrusion barrier wells may facilitate more near-term groundwater use
  - Does not address needs in SVWD or SqCWD
- Plan B, switching to DPR, meets all SCWD needs
  - Also enables in lieu recharge (by meeting 57% of SVWD and SqCWD demands)
  - Adds a modest added costs to Plan A (convert IPR to DPR)

- Plan A, *IF* ASR functions as required, addresses City needs
  - Having DW Desal water in Plan A assures SCWD needs are met
  - Also addresses 100% of demands in SVWD and SqCWD
- Plan B, switching to DPR, meets all SCWD needs
  - Also enables in lieu recharge (by meeting 57% of SVWD and SqCWD demands)
  - Costs a bit more than Plan A (ASR)
  - Higher energy use than ASR

- Discussion
- Questions?

# Thank you!