Recycled Water in USEPA Region 9

Bruce A Macler, PhD USEPA Region 9 415 972-3569 macler.bruce@epa.gov

Bottom Line: USEPA's Views on Water Recycling in R9

- ► Wastewater can be recycled safely, even for potable purposes
- Much opportunity: use of treated wastewater varies from only ~15% in CA and NV to ~80% in AZ
- Most recycled water is used for non-potable purposes, like agriculture and landscaping
- Substantial indirect potable reuse, though
 - Groundwater recharge
 - Surface water disposal ("de facto" potable reuse)
- In CA, of ~2.3 BGD total treated wastewater, about 1 BGD is merely piped to the ocean
 - ► Wasted resource
 - Good opportunity for new projects

Uses for Recycled Water

- Urban: recreational fields, golf courses
- Agricultural: food crops, non-food crops, livestock watering
- Impoundments: recreational water bodies, landscape features, snowmaking
- Environmental: wetlands (habitat, fisheries, recreation), flow augmentation, ecological benefits
- Industrial: cooling towers, boiler water, oil/gas production, food manufacturing, high-tech
- Groundwater recharge: salinity barriers, "non-potable" potable
- Drinking water

Recycling for Human Consumption: "Potable Reuse"

- Much wastewater is treated and disposed into surface water bodies
- It is often in a source of drinking water of downstream communities
 - Dilution counts for something, but variable
 - Maybe some additional microbial inactivation
- "Indirect potable reuse" specifically addresses wastewaters purposely recycled for drinking water
 - Higher levels of treatment
 - Environmental buffers (groundwater recharge, surface augmentation)
- "Direct" potable reuse skips the environmental buffers

Federal Regulatory Requirements for Water Recycling

- No direct requirements governing recycling
 - No prohibitions
- Clean Water Act governs discharge of wastewater to receiving bodies to protect beneficial uses through NPDES permits
 - Usually, just secondary treatment
- Safe Drinking Water Act governs quality/safety of water to the consumer
 - Maximum Contaminant Levels apply to finished water
 - Surface Water Treatment Rules have some source water quality components that govern treatment requirements
- Current Agency thinking is potable reuse goes under SDWA

The Safe Drinking Water Act

- Federal law to protect public from drinking water contaminants of health concern
- Adopted 1974
- Significant amendments in 1986, 1996
- 1986 amendments had explicit, stringent health goals and risk management approaches

The Safe Drinking Water Act Directs EPA's DW Regulations

Maximum Contaminant Level Goals

- Not enforceable, but direct MCL selection
- "Each MCLG...shall be set at the level at which no known or anticipated adverse effects on the health of persons occur and which allow an adequate margin of safety"

National Primary Drinking Water Regulations

- Enforceable
- Set as close as feasible to MCLGs
- Feasible analytical methods and treatment technologies
- Administrator can adjust MCL for cost reasons

How Safe is the Water? Risks and "Regulatory Risks"

- What is <u>risky</u> is in the eyes of you, the consumer
- Risks that produce health effects that a medical doctor can see are usually >1 person in 100
 - Smoking -> lung cancer ~1/10
 - Driving -> dying in car accident ~1/200
 - Waterborne disease outbreak ~1/5
- Drinking water regulations require risks below detection, ~1/10,000 to 1/million

EPA Public Health Goals for DW Chemical Contaminants

- For contaminants with no threshold for adverse effects (genotoxic carcinogens)
 - \blacktriangleright MCLG = 0
 - MCL generally set between 1/10,000 and 1/million increased lifetime risk, based on risk assessments
- For contaminants showing a threshold for adverse effects (cytotoxic carcinogens, non-carcinogens)
 - MCLG based on Reference Dose (RfD), set to be below any known adverse health effects
 - MCL set as close as feasible to MCLG

Drinking Water Risk Assessments

USEPA DW risk assessments designed to find "zero" risk, to determine MCLG

"Regulatory risk" assessment

- Extrapolate data from known risks at higher exposures to estimate zero risk exposure level
- Generally lack complete information
- ► Use conservative assumptions, not averages
- Thus, real risks may be over-estimated
- Can't be used to predict actual illness rates

Health Risks From Recycled Water

Pretty much anything in wastewater could be in most water sources

- Pathogens
- Toxic organic and inorganic chemicals
- Radioactive materials
- The issue is mostly whether the treatment gets these out
 - ▶ For almost everything we know about, the answer is yes.
- There are some concerns for treatment byproducts
 - Transformed chemicals
 - Byproducts of disinfection
- And concern for the "unknown unknowns"

Recycling Treatment Processes

Wastewater

- Primary: removal of settled and floating materials
- Secondary: biological oxidation to remove organics
- Tertiary: filtration, disinfection
- Advanced tertiary: oxidation (ozonation, UV/peroxide), reverse osmosis treatment to remove trace chemicals, denitrification/nitrification

Drinking water

- Coagulation/flocculation/sedimentation
- Filtration

Disinfection

Typical Potable Reuse Treatment Criteria

Advanced tertiary treatment of wastewater

- Oxidation, microfiltration, reverse osmosis, UV/peroxide or ozone oxidation, disinfection
- ► For indirect potable reuse, add
 - Groundwater recharge, residence for some time (months)
 - Surface water augmentation, 1:10 dilution, residence for ~six months
- ► Then, conventional drinking water treatment
 - Flocculation/coagulation, sedimentation, filtration, disinfection
 - Often, advanced disinfection (ozone, UV)

Public Health Concerns for Potable Reuse

- Catastrophic failure of much or all of treatment train, allowing sewage to reach public
 - Multiple independent treatment elements
 - Adequate time from detection to control
- Treatment-resistant contaminants of known health concern
 - Monitoring against risk benchmarks
- Unknown contaminants of health consequence

Waste Not, Want Not: Opportunities for Additional Water Recycling

- It is said that in inland areas, much wastewater is minimally treated, then evaporated by spraying or spreading on land in lagoons
 - NPDES program has compliance issues with some of these systems
- As noted, in coastal areas, much water is treated and disposed in the ocean
- Both situations result in water lost to any beneficial purpose
- Many non-potable beneficial applications only require additional disinfection
 - ► Where salt or trace contaminants are not issues

Whose Wastewater is It, Anyway?

- POTWs have traditionally been doing a service to the public
- But treated wastewater can be considered a resource or commodity
- POTWs can become businesses selling recycled water
- But maybe others should have a say in allocating this water? Especially if public funds are subsidizing it?

Disincentives to Recycling

Continued availability of free or cheap water

- Lack of money for infrastructure, O&M
- Lack of appropriate distribution systems
- Regulatory hassles and delays

So How Much Water is Recycled in R9?

Limited data are available on water recycling in Region 9 states

- WateReuse Association maintains a database on purposeful recycling, gathered from their surveys
- Data are outdated, for only one or a few years, and inconsistent. True numbers likely to be higher...
- Data do not include treated water returned to environment
- California: 221 systems, 218 billion gallons recycled (2009)
 - 13% of treated wastewater
- Arizona: 180 systems, 62 B gallons recycled (2012-2013)
 - 82% of treated wastewater
- ▶ Nevada: 5 systems, 6.7 B gallons recycled (2011)
 - 15% of treated wastewater

Recycled Water Uses in R9

- California
 - ► Largest use for reused water is for agriculture (36%, 79 BGY)
 - Landscape and golf course irrigation (23%, 50 BGY)
 - Groundwater recharge/ seawater barriers (19%, 42 BGY)
 - Industrial uses 10%, 21 BGY).
- Arizona
 - Largest uses are for power generation and agriculture (each 27%, each17 BGY)
 - Groundwater recharge (26%, 16 BGY)
 - Surface water augmentation (13%, 8 BGY)
 - Landscape irrigation (7%, 4 BGY)
- In Nevada, most is for public landscape irrigation (85%, 6.0 BGY)